

## Glycogen Synthase Activity Colorimetric Microplate Assay Kit

**Cat #:** orb707344 (manual)

*For research use only. Not intended for diagnostic use.*

### Product Features

**Intend Use:** Detection and Quantification of Glycogen Synthase (GCS) Activity in Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and Other biological fluids Samples.

**Detection Range:** 4 $\mu$ mol/L - 400  $\mu$ mol/L

**Sample Types:** Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and Other biological fluids

### Assay Principle

Glycogen synthase (EC 2.4.1.11) is a key enzyme in glycogenesis, the process by which glucose is converted into glycogen. It is a glycosyltransferase that catalyzes the reaction between UDP-glucose and (1,4- $\alpha$ -D-glucosyl) $n$ , producing UDP and (1,4- $\alpha$ -D-glucosyl) $n + 1$ . In essence, glycogen synthase sequentially adds excess glucose residues to form a polymeric chain for storage as glycogen. Glycogen synthase concentrations are highest in the bloodstream 30 to 60 minutes after intense exercise.

The Glycogen Synthase Activity Colorimetric Microplate Assay Kit provides a sensitive method for measuring glycogen synthase activity in a variety of sample types. Enzyme activity is determined by monitoring the rate of NADH decomposition, with reaction products quantified using a colorimetric readout at 340 nm.

### Kit Components

| Component          | Volume     | Storage |
|--------------------|------------|---------|
| 96-Well Microplate | 1 plate    |         |
| Assay Buffer       | 30 ml x 4  | 4 °C    |
| Reaction Buffer I  | 5 ml x 1   | 4 °C    |
| Substrate          | Powder x 1 | -20 °C  |
| Reaction Buffer II | 15ml x 1   | 4 °C    |
| Enzyme             | Powder x 1 | -20 °C  |
| Standard           | Powder x 1 | -20 °C  |
| Technical Manual   | 1 Manual   |         |

#### Note:

Substrate: add 1 ml Reaction Buffer I to dissolve before use.

Enzyme: add 1 ml Reaction Buffer II to dissolve before use.

Standard: add 1 ml distilled water to dissolve before use; then add 0.2 ml into 0.8 ml distilled water, the concentration will be 400  $\mu$ mol/L.

### Materials Required but Not Supplied

1. Microplate reader to read absorbance at 340 nm
2. Distilled water
3. Pipettor, multi-channel pipettor
4. Pipette tips
5. Mortar
6. Centrifuge
7. Timer
8. Ice

### Sample Preparation

1. For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for  $5 \times 10^6$  cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s, repeat 30 times); centrifuged at 10,000g 4°C for 15 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples

Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer on ice, centrifuged at 10,000g 4°C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3. For liquid samples Detect directly.

### Assay Procedure

Warm all reagents to 37 °C before use.

Add the following reagents to the microplate:

| Reagent                            | Sample      | Standard    | Blank       |
|------------------------------------|-------------|-------------|-------------|
| Reaction Buffer I                  | 40 $\mu$ l  | --          | --          |
| Substrate                          | 10 $\mu$ l  | --          | --          |
| Sample                             | 10 $\mu$ l  | --          | --          |
| Mix, incubate at 37 °C for 5 mins. |             |             |             |
| Standard                           | --          | 200 $\mu$ l | --          |
| Distilled water                    | --          | --          | 200 $\mu$ l |
| Reaction Buffer II                 | 130 $\mu$ l | --          | --          |

|                                                                                  |            |    |    |
|----------------------------------------------------------------------------------|------------|----|----|
| Enzyme                                                                           | 10 $\mu$ l | -- | -- |
| Mix, measured at 340 nm and record the absorbance of 10thsecond and 70th second. |            |    |    |

Note:

- 1) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 2) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time.
- 3) Reagents must be added step by step, cannot be mixed and added together.

### Calculation of Results

Unit Definition: One Unit of Glycogen Synthase activity is defined as the enzyme reduces 1  $\mu$ mol of NADH per minute.

#### 1. According to the protein concentration of sample

$$GCS \text{ (U/mg)} = (C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}}) / (V_{\text{Sample}} \times C_{\text{Protein}}) / T$$

$$= 1.6 \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}}) / C_{\text{Protein}}$$

#### 2. According to the weight of sample

$$GCS \text{ (U/g)} = (C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}}) / (V_{\text{Sample}} \times W / V_{\text{Assay}}) / T$$

$$= 1.6 \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}}) / W$$

#### 3. According to the quantity of cells or bacteria

$$GCS \text{ (U/10}^4\text{)} = (C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}}) / (V_{\text{Sample}} \times N / V_{\text{Assay}}) / T$$

$$= 1.6 \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}}) / N$$

#### 4. According to the volume of sample

$$GCS \text{ (U/ml)} = (C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}}) / V_{\text{Sample}} / T$$

$$= 1.6 \times (OD_{\text{Sample}(10S)} - OD_{\text{Sample}(70S)}) / (OD_{\text{Standard}} - OD_{\text{Blank}})$$

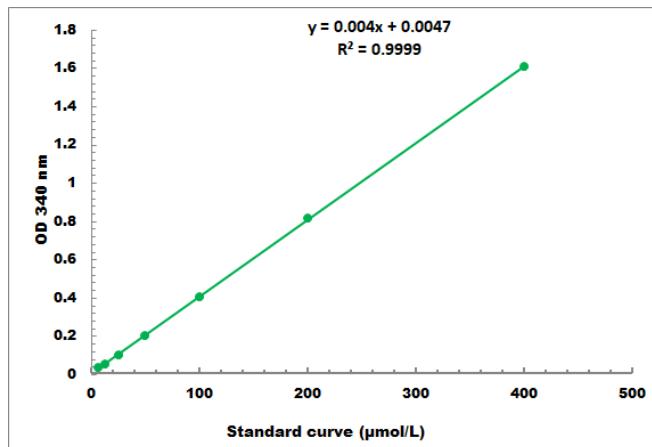
$C_{\text{Standard}}$ : the standard concentration, 400  $\mu$ mol/L = 0.4  $\mu$ mol/ml

$V_{\text{Standard}}$ : the volume of standard, 200  $\mu$ l = 0.2 ml

$C_{\text{Protein}}$ : the protein concentration, mg/ml

$W$ : the weight of sample, g

$N$ : the quantity of cell or bacteria,  $N \times 10^4$


$V_{\text{Sample}}$ : the volume of sample, 0.01ml

$V_{\text{Assay}}$ : the volume of Assay buffer, 1ml

$T$ : the reaction time in step 1, 5 minutes.

## Typical Data

The standard curve is for demonstration only. A standard curve must be run with each assay.



Detection Range: 4μmol/L - 400 μmol/L